Discriminant Groups
Torsion Quadratic Modules
A torsion quadratic module is the quotient
as well as a quadratic form
where
torsion_quadratic_module Method
torsion_quadratic_module(M::ZZLat, N::ZZLat; gens::Union{Nothing, Vector{<:Vector}} = nothing,
snf::Bool = true,
modulus::RationalUnion = QQFieldElem(0),
modulus_qf::RationalUnion = QQFieldElem(0),
check::Bool = true) -> TorQuadModule
Given a Z-lattice
If gens
is set, the images of gens
will be used as the generators of the abelian group
If snf
is true
, the underlying abelian group will be in Smith normal form. Otherwise, the images of the basis of
One can decide on the modulus for the associated finite bilinear and quadratic forms by setting modulus
and modulus_qf
respectively to the desired values.
The underlying Type
TorQuadModule Type
TorQuadModule
Examples
julia> A = matrix(ZZ, [[2,0,0,-1],[0,2,0,-1],[0,0,2,-1],[-1,-1,-1,2]]);
julia> L = integer_lattice(gram = A);
julia> T = Hecke.discriminant_group(L)
Finite quadratic module
over integer ring
Abelian group: (Z/2)^2
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[ 1 1//2]
[1//2 1]
We represent torsion quadratic modules as quotients of
We store them as a M
together with a projection p : M -> A
onto an abelian group A
. The bilinear structure of A
is induced via p
, that is <a, b> = <p^-1(a), p^-1(a)>
with values in p
.
Elements of A are basically just elements of the underlying abelian group. To move between M
and A
, we use the lift
function lift : M -> A
and coercion A(m)
.
Examples
julia> R = rescale(root_lattice(:D,4),2);
julia> D = discriminant_group(R);
julia> A = abelian_group(D)
(Z/2)^2 x (Z/4)^2
julia> d = D[1]
Element
of finite quadratic module: (Z/2)^2 x (Z/4)^2 -> Q/2Z
with components [1 0 0 0]
julia> d == D(A(d))
true
julia> lift(d)
4-element Vector{QQFieldElem}:
1
1
3//2
1
N.B. Since there are no elements of M
as elements of the ambient vector space. Thus if v::Vector
is such an element then the coordinates with respec to the basis of M
are given by solve(basis_matrix(M), v; side = :left)
.
Most of the functionality mirrors that of AbGrp
its elements and homomorphisms. Here we display the part that is specific to elements of torsion quadratic modules.
Attributes
abelian_group Method
abelian_group(T::TorQuadModule) -> FinGenAbGroup
Return the underlying abelian group of T
.
value_module Method
value_module(T::TorQuadModule) -> QmodnZ
Return the value module Q/nZ
of the bilinear form of T
.
value_module_quadratic_form Method
value_module_quadratic_form(T::TorQuadModule) -> QmodnZ
Return the value module Q/mZ
of the quadratic form of T
.
gram_matrix_bilinear Method
gram_matrix_bilinear(T::TorQuadModule) -> QQMatrix
Return the gram matrix of the bilinear form of T
.
gram_matrix_quadratic Method
gram_matrix_quadratic(T::TorQuadModule) -> QQMatrix
Return the 'gram matrix' of the quadratic form of T
.
The off diagonal entries are given by the bilinear form whereas the diagonal entries are given by the quadratic form.
modulus_bilinear_form Method
modulus_bilinear_form(T::TorQuadModule) -> QQFieldElem
Return the modulus of the value module of the bilinear form ofT
.
modulus_quadratic_form Method
modulus_quadratic_form(T::TorQuadModule) -> QQFieldElem
Return the modulus of the value module of the quadratic form of T
.
Elements
quadratic_product Method
quadratic_product(a::TorQuadModuleElem) -> QmodnZElem
Return the quadratic product of a
.
It is defined in terms of a representative: for
inner_product Method
inner_product(a::TorQuadModuleElem, b::TorQuadModuleElem) -> QmodnZElem
Return the inner product of a
and b
.
Lift to the cover
lift Method
lift(a::TorQuadModuleElem) -> Vector{QQFieldElem}
Lift a
to the ambient space of cover(parent(a))
.
For
representative Method
representative(a::TorQuadModuleElem) -> Vector{QQFieldElem}
For lift(a)
.
Orthogonal submodules
orthogonal_submodule Method
orthogonal_submodule(T::TorQuadModule, S::TorQuadModule)-> TorQuadModule
Return the orthogonal submodule to the submodule S
of T
.
Isometry
is_isometric_with_isometry Method
is_isometric_with_isometry(T::TorQuadModule, U::TorQuadModule)
-> Bool, TorQuadModuleMap
Return whether the torsion quadratic modules T
and U
are isometric. If yes, it also returns an isometry
If T
and U
are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic
).
It requires that both T
and U
have modulus 1: in case one of them do not, they should be rescaled (see rescale
).
Examples
julia> T = torsion_quadratic_module(QQ[2//3 2//3 0 0 0;
2//3 2//3 2//3 0 2//3;
0 2//3 2//3 2//3 0;
0 0 2//3 2//3 0;
0 2//3 0 0 2//3])
Finite quadratic module
over integer ring
Abelian group: (Z/3)^5
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[2//3 2//3 0 0 0]
[2//3 2//3 2//3 0 2//3]
[ 0 2//3 2//3 2//3 0]
[ 0 0 2//3 2//3 0]
[ 0 2//3 0 0 2//3]
julia> U = torsion_quadratic_module(QQ[4//3 0 0 0 0;
0 4//3 0 0 0;
0 0 4//3 0 0;
0 0 0 4//3 0;
0 0 0 0 4//3])
Finite quadratic module
over integer ring
Abelian group: (Z/3)^5
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[4//3 0 0 0 0]
[ 0 4//3 0 0 0]
[ 0 0 4//3 0 0]
[ 0 0 0 4//3 0]
[ 0 0 0 0 4//3]
julia> bool, phi = is_isometric_with_isometry(T,U)
(true, Map: finite quadratic module -> finite quadratic module)
julia> is_bijective(phi)
true
julia> T2, _ = sub(T, [-T[4], T[2]+T[3]+T[5]])
(Finite quadratic module: (Z/3)^2 -> Q/2Z, Map: finite quadratic module -> finite quadratic module)
julia> U2, _ = sub(T, [T[4], T[2]+T[3]+T[5]])
(Finite quadratic module: (Z/3)^2 -> Q/2Z, Map: finite quadratic module -> finite quadratic module)
julia> bool, phi = is_isometric_with_isometry(U2, T2)
(true, Map: finite quadratic module -> finite quadratic module)
julia> is_bijective(phi)
true
is_anti_isometric_with_anti_isometry Method
is_anti_isometric_with_anti_isometry(T::TorQuadModule, U::TorQuadModule)
-> Bool, TorQuadModuleMap
Return whether there exists an anti-isometry between the torsion quadratic modules T
and U
. If yes, it returns such an anti-isometry
If T
and U
are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic
).
It requires that both T
and U
have modulus 1: in case one of them do not, they should be rescaled (see rescale
).
Examples
julia> T = torsion_quadratic_module(QQ[4//5;])
Finite quadratic module
over integer ring
Abelian group: Z/5
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[4//5]
julia> bool, phi = is_anti_isometric_with_anti_isometry(T, T)
(true, Map: finite quadratic module -> finite quadratic module)
julia> a = gens(T)[1];
julia> a*a == -phi(a)*phi(a)
true
julia> G = matrix(QQ, 6, 6 , [3 3 0 0 0 0;
3 3 3 0 3 0;
0 3 3 3 0 0;
0 0 3 3 0 0;
0 3 0 0 3 0;
0 0 0 0 0 10]);
julia> V = quadratic_space(QQ, G);
julia> B = matrix(QQ, 6, 6 , [1 0 0 0 0 0;
0 1//3 1//3 2//3 1//3 0;
0 0 1 0 0 0;
0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1//5]);
julia> M = lattice(V, B);
julia> B2 = matrix(QQ, 6, 6 , [ 1 0 -1 1 0 0;
0 0 1 -1 0 0;
-1 1 1 -1 -1 0;
1 -1 -1 2 1 0;
0 0 -1 1 1 0;
0 0 0 0 0 1]);
julia> N = lattice(V, B2);
julia> T = torsion_quadratic_module(M, N)
Finite quadratic module
over integer ring
Abelian group: Z/15
Bilinear value module: Q/Z
Quadratic value module: Q/Z
Gram matrix quadratic form:
[3//5]
julia> bool, phi = is_anti_isometric_with_anti_isometry(T,T)
(true, Map: finite quadratic module -> finite quadratic module)
julia> a = gens(T)[1];
julia> a*a == -phi(a)*phi(a)
true
Primary and elementary modules
is_primary_with_prime Method
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem
Given a torsion quadratic module T
, return whether the underlying (finite) abelian group of T
(see abelian_group
) is a p
-group for some prime number p
. In case it is, p
is also returned as second output.
Note that in the case of trivial groups, this function returns (true, 1)
. If T
is not primary, the second return value is -1
by default.
is_primary Method
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool
Given a torsion quadratic module T
and a prime number p
, return whether the underlying (finite) abelian group of T
(see abelian_group
) is a p
-group.
is_elementary_with_prime Method
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem
Given a torsion quadratic module T
, return whether the underlying (finite) abelian group of T
(see abelian_group
) is an elementary p
-group, for some prime number p
. In case it is, p
is also returned as second output.
Note that in the case of trivial groups, this function returns (true, 1)
. If T
is not elementary, the second return value is -1
by default.
is_elementary Method
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool
Given a torsion quadratic module T
and a prime number p
, return whether the underlying (finite) abelian group of T
(see abelian_group
) is an elementary p
-group.
Smith normal form
snf Method
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
Given a torsion quadratic module T
, return a torsion quadratic module S
, isometric to T
, such that the underlying abelian group of S
is in canonical Smith normal form. It comes with an isometry
is_snf Method
is_snf(T::TorQuadModule) -> Bool
Given a torsion quadratic module T
, return whether its underlying abelian group is in Smith normal form.
Discriminant Groups
See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.
From a lattice
discriminant_group Method
discriminant_group(L::ZZLat) -> TorQuadModule
Return the discriminant group of L
.
The discriminant group of an integral lattice L
is the finite abelian group D = dual(L)/L
.
It comes equipped with the discriminant bilinear form
If L
is even, then the discriminant group is equipped with the discriminant quadratic form
From a matrix
torsion_quadratic_module Method
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule
Return a torsion quadratic module with gram matrix given by q
and value module Q/Z
. If all the diagonal entries of q
have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z
Example
julia> torsion_quadratic_module(QQ[1//6;])
Finite quadratic module
over integer ring
Abelian group: Z/6
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[1//6]
julia> torsion_quadratic_module(QQ[1//2;])
Finite quadratic module
over integer ring
Abelian group: Z/2
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[1//2]
julia> torsion_quadratic_module(QQ[3//2;])
Finite quadratic module
over integer ring
Abelian group: Z/2
Bilinear value module: Q/Z
Quadratic value module: Q/2Z
Gram matrix quadratic form:
[3//2]
julia> torsion_quadratic_module(QQ[1//3;])
Finite quadratic module
over integer ring
Abelian group: Z/3
Bilinear value module: Q/Z
Quadratic value module: Q/Z
Gram matrix quadratic form:
[1//3]
Rescaling the form
rescale Method
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule
Return the torsion quadratic module with quadratic form scaled by n
, then the new form is defined modulo n k
.
Invariants
is_degenerate Method
is_degenerate(T::TorQuadModule) -> Bool
Return true if the underlying bilinear form is degenerate.
is_semi_regular Method
is_semi_regular(T::TorQuadModule) -> Bool
Return whether T
is semi-regular, that is its quadratic radical is trivial (see radical_quadratic
).
radical_bilinear Method
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
Return the radical \{x \in T | b(x,T) = 0\}
of the bilinear form b
on T
.
radical_quadratic Method
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
Return the radical \{x \in T | b(x,T) = 0 and q(x)=0\}
of the quadratic form q
on T
.
normal_form Method
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap
Return the normal form N
of the given torsion quadratic module T
along with the projection T -> N
.
Let K
be the radical of the quadratic form of T
. Then N = T/K
is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.
Genus
genus Method
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
parity::RationalUnion = modulus_quadratic_form(T))
-> ZZGenus
Return the genus of an integer lattice whose discriminant group has the bilinear form of T
, the given signature_pair
and the given parity
.
The argument parity
is one of the following: either parity == 1
for genera of odd lattices, or parity == 2
for even lattices. By default, parity
is set to be as the parity of the quadratic form on T
If no such genus exists, raise an error.
Reference
[6] Corollary 1.9.4 and 1.16.3.
brown_invariant Method
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem
Return the Brown invariant of this torsion quadratic form.
Let (D,q)
be a torsion quadratic module with values in Q / 2Z
. The Brown invariant Br(D,q) in Z/8Z
is defined by the equation
The Brown invariant is additive with respect to direct sums of torsion quadratic modules.
Examples
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
julia> T = Hecke.discriminant_group(L);
julia> brown_invariant(T)
4
is_genus Method
is_genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
parity::RationalUnion = modulus_quadratic_form(T)) -> Bool
Return if there is an integral lattice whose discriminant form has the bilinear form of T
, whose signatures match signature_pair
and which is of parity parity
.
The argument parity
is one of the following: either parity == 1
for genera of odd lattices, or parity == 2
for even lattices. By default, parity
is set to be as the parity of the quadratic form on T
Categorical constructions
direct_sum Method
direct_sum(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
direct_sum(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
Given a collection of torsion quadratic modules
For objects of type TorQuadModule
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T
as a direct product with the projections direct_product(x)
. If one wants to obtain T
as a biproduct with the injections biproduct(x)
.
direct_product Method
direct_product(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
direct_product(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
Given a collection of torsion quadratic modules
For objects of type TorQuadModule
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T
as a direct sum with the inctions direct_sum(x)
. If one wants to obtain T
as a biproduct with the injections biproduct(x)
.
biproduct Method
biproduct(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}
biproduct(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}
Given a collection of torsion quadratic modules
For objects of type TorQuadModule
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T
as a direct sum with the inctions direct_sum(x)
. If one wants to obtain T
as a direct product with the projections direct_product(x)
.
Submodules
submodules Method
submodules(T::TorQuadModule; kw...)
Return the submodules of T
as an iterator. Possible keyword arguments to restrict the submodules:
order::Int
: only submodules of orderorder
,index::Int
: only submodules of indexindex
,subtype::Vector{Int}
: only submodules which are isomorphic as an abelian group toabelian_group(subtype)
,quotype::Vector{Int}
: only submodules whose quotient are isomorphic as an abelian toabelian_group(quotype)
.
stable_submodules Method
stable_submodules(T::TorQuadModule, act::Vector{TorQuadModuleMap}; kw...)
Return the submodules of T
stable under the endomorphisms in act
as an iterator. Possible keyword arguments to restrict the submodules:
quotype::Vector{Int}
: only submodules whose quotient are isomorphic as an abelian group toabelian_group(quotype)
.