Fractional ideals
A fractional ideal in the number field
Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal
.
Creation
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal
Creates the fractional ideal of M_in_hnf
is set, then it is assumed that
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal
Creates the fractional ideal of M_in_hnf
is set, then it is assumed that
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdeal
Creates the fractional ideal of
fractional_ideal Method
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal
The fractional ideal of
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdeal
Turns the ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdeal
Creates the fractional ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, a::AbsSimpleNumFieldElem) -> AbsNumFieldOrderFractionalIdeal
Creates the principal fractional ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, a::AbsNumFieldOrderElem) -> AbsNumFieldOrderFractionalIdeal
Creates the principal fractional ideal
inv Method
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal
Computes the inverse of
Arithmetic
All the normal operations are provided as well.
inv Method
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdeal
Returns the fractional ideal
integral_split Method
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdeal
Computes the unique coprime integral ideals
numerator Method
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdeal
Returns the ideal
denominator Method
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElem
Returns the smallest positive integer
Miscaellenous
order Method
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder
The order that was used to define the ideal
basis_matrix Method
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMat
Returns the basis matrix of
basis_mat_inv Method
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
Return the inverse of the basis matrix of
basis Method
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
Returns the
norm Method
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElem
Returns the norm of
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
Returns the norm of
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S
Returns the norm of
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem
Returns the norm of
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
where { S, T, U } -> T
Returns the norm of