Skip to content

Fractional ideals

A fractional ideal in the number field K is a ZK-module A such that there exists an integer d>0 which dA is an (integral) ideal in ZK. Due to the Dedekind property of ZK, the ideals for a multiplicative group.

Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal.

Creation

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O generated by the elements corresponding to the rows of M.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

The fractional ideal of O generated by a Z-basis of I.

source

julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdeal

Turns the ideal I into a fractional ideal of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal I/b of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsSimpleNumFieldElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsNumFieldOrderElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

inv Method
julia
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

Computes the inverse of A, that is, the fractional ideal B such that AB=OK.

source

Arithmetic

All the normal operations are provided as well.

inv Method
julia
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdeal

Returns the fractional ideal B such that AB=O.

source

integral_split Method
julia
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdeal

Computes the unique coprime integral ideals N and D s.th. A=ND1

source

numerator Method
julia
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdeal

Returns the ideal da where d is the denominator of a.

source

denominator Method
julia
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElem

Returns the smallest positive integer d such that da is contained in the order of a.

source

Miscaellenous

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

basis_matrix Method
julia
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMat

Returns the basis matrix of I with respect to the basis of the order.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

basis Method
julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

norm Method
julia
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElem

Returns the norm of I.

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Returns the norm of a.

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S

Returns the norm of a.

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
  where { S, T, U } -> T

Returns the norm of a considered as an (possibly fractional) ideal of O.

source