Skip to content

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

zero_algebra Method
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra

Return the zero ring as an algebra over the field K.

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
Structure constant algebra of dimension 0 over QQ

source

Basic properties

base_ring Method
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field

Given a K-algebra A, return K.

source

basis Method
julia
basis(A::AbstractAssociativeAlgebra) -> Vector

Given a K-algebra A return the K-basis of A. See also coordinates to get the the coordinates of an element with respect to the bases.

source

Predicates

is_zero Method
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is the zero algebra.

source

is_commutative Method
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is commutative.

Examples

julia
julia> A = matrix_algebra(QQ, 2);

julia> is_commutative(A)
false

source

is_central Method
julia
is_central(A::AbstractAssociativeAlgebra)

Return whether the K-algebra A is central, that is, whether K is the center of A.

source

Generators

gens Method
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector

Given a K-algebra A, return a subset of basis(A), which generates A as an algebra over K.

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);

julia> gens(A; thorough_search = true)
5-element Vector{MatAlgebraElem{QQFieldElem, QQMatrix}}:
 [1 0 0; 0 0 0; 0 0 0]
 [0 0 0; 1 0 0; 0 0 0]
 [0 0 0; 0 0 0; 1 0 0]
 [0 1 0; 0 0 0; 0 0 0]
 [0 0 1; 0 0 0; 0 0 0]

source

gens_with_data Method
julia
gens_with_data(A::AbstractAssociativeAlgebra; thorough_search::Bool = false)
                                                   -> Vector, Vector, Vector

Given a K-algebra A, return a triple (G,B,w) consisting of

  • a subset G of basis(A), which generates A as an algebra over K,

  • a (new) basis B and a vector w::Vector{Tuple{Int, Int}}, such that B[i] = prod(G[j]^k for (j, k) in w[i].

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

Examples

julia
julia> A = matrix_algebra(QQ, 3);

julia> G, B, w = gens_with_data(A; thorough_search = true);

julia> B[1] == prod(G[i]^j for (i, j) in w[1])
true

source

Center

center Method
julia
center(A::AbstractAssociativeAlgebra)
                                   -> StructureConstantAlgebra, Map

Returns the center C of A and the inclusion CA. Note that C itself is an algebra.

Examples

julia
julia> A = matrix_algebra(QQ, 2);

julia> C, CtoA = center(A);

julia> C
Structure constant algebra of dimension 1 over QQ

source

dimension_of_center Method
julia
dimension_of_center(A::AbstractAssociativeAlgebra) -> Int

Given a K-algebra, return the K-dimension of the center of A.

Examples

julia
julia> A = matrix_algebra(QQ, 2);

julia> dimension_of_center(A)
1

source

dimension_over_center Method
julia
dimension_over_center(A::AbstractAssociativeAlgebra) -> Int

Given a simple K-algebra with center C, return the C-dimension A.

Examples

julia
julia> A = matrix_algebra(QQ, 2);

julia> dimension_of_center(A)
1

source