Complex embedding
We describe functionality for complex embeddings of arbitrary number fields. Note that a complex embeddding of a number field
Construction of complex embeddings
complex_embeddings Method
complex_embeddings(K::NumField; conjugates::Bool = true) -> Vector{NumFieldEmb}
Return the complex embeddings of conjugates
is false
, only one imaginary embedding per conjugated pairs is returned.
Examples
julia> K, a = quadratic_field(-3);
julia> complex_embeddings(K)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Complex embedding corresponding to 0.00 + 1.73 * i of imaginary quadratic field
Complex embedding corresponding to 0.00 - 1.73 * i of imaginary quadratic field
julia> complex_embeddings(K, conjugates = false)
1-element Vector{AbsSimpleNumFieldEmbedding}:
Complex embedding corresponding to 0.00 + 1.73 * i of imaginary quadratic field
real_embeddings Method
real_embeddings(K::NumField) -> Vector{NumFieldEmb}
Return the real embeddings of
Examples
julia> K, a = quadratic_field(3);
julia> real_embeddings(K)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Complex embedding corresponding to -1.73 of real quadratic field
Complex embedding corresponding to 1.73 of real quadratic field
Properties
number_field Method
number_field(f::NumFieldEmb) -> NumField
Return the corresponding number field of the embedding
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K)[1];
julia> number_field(e)
Imaginary quadratic field defined by x^2 + 3
is_real Method
is_real(f::NumFieldEmb) -> Bool
Return true
if the embedding is real.
Examples
julia> K, a = quadratic_field(3); e = complex_embeddings(K)[1];
julia> is_real(e)
true
is_imaginary Method
is_imaginary(f::NumFieldEmb) -> Bool
Returns true
if the embedding is imaginary, that is, not real.
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K)[1];
julia> is_imaginary(e)
true
Conjugated embedding
conj Method
conj(f::NumFieldEmb) -> NumFieldEmb
Returns the conjugate embedding of f
.
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K);
julia> conj(e[1]) == e[2]
true
Evaluating elements at complex embeddings
Given an embedding
(f::NumFieldEmb)(x::NumFieldElem, prec::Int = 32) -> AcbFieldElem
Note that the return type will be a complex ball of type
AcbFieldElem
. The radiusr
of the ball is guaranteed to satisfyr < 2^(-prec)
.If the embedding is real, then the value
c
will satisfyis_real(c) == true
.
For convenience, we also provide the following function to quickly create a corresponding anonymous function:
evaluation_function Method
evaluation_function(e::NumFieldEmb, prec::Int) -> Function
Return the anonymous function x -> e(x, prec)
.
Examples
julia> K, a = quadratic_field(-3);
julia> e = complex_embeddings(K)[1];
julia> fn = evaluation_function(e, 64);
julia> fn(a)
[+/- 3.99e-77] + [1.73205080756887729353 +/- 5.41e-21]*im
Logarithmic embedding
Given an object e
representing an embedding log(abs(e))
.
julia> K, a = quadratic_field(2);
julia> e = complex_embedding(K, 1.41)
Complex embedding corresponding to 1.41
of real quadratic field defined by x^2 - 2
julia> log(abs(e))(a, 128)
[0.346573590279972654708616060729088284037750067180127627 +/- 4.62e-55]
julia> log(abs(e(a)))
[0.346573590 +/- 2.99e-10]
Restriction
Given a subfield
restrict Method
restrict(f::NumFieldEmb, K::NumField)
Given an embedding
Examples
julia> K, a = quadratic_field(3);
julia> L, b = number_field(polynomial(K, [1, 0, 1]), "b");
julia> e = complex_embeddings(L);
julia> restrict(e[1], K)
Complex embedding corresponding to -1.73
of real quadratic field defined by x^2 - 3
restrict Method
restrict(f::NumFieldEmb, g::NumFieldHom)
Given an embedding
This is the same as g * f
.
Examples
julia> K, a = cyclotomic_field(5, "a");
julia> k, ktoK = Hecke.subfield(K, [a + inv(a)]);
julia> e = complex_embeddings(K);
julia> restrict(e[1], ktoK)
Complex embedding corresponding to 0.62
of number field with defining polynomial x^2 + x - 1
over rational field
Extension
Given a complex embedding
extend Method
extend(e::NumFieldEmb, f::NumFieldHom)
Given an embedding
Example
julia> K, a = cyclotomic_field(5, "a");
julia> k, ktoK = Hecke.subfield(K, [a + inv(a)]);
julia> e = complex_embeddings(k)[1];
julia> extend(e, ktoK)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Complex embedding corresponding to -0.81 + 0.59 * i of cyclotomic field of order 5
Complex embedding corresponding to -0.81 - 0.59 * i of cyclotomic field of order 5
Positivity & Signs
sign Method
sign(x::NumFieldElem, e::NumFieldEmb) -> Int
Given a number field element x
and a complex embedding e
, return 1
, -1
or 0
depending on whether e(x)
is positive, negative, or zero.
Examples
julia> K, a = quadratic_field(3);
julia> e = complex_embedding(K, 1.7);
julia> sign(a, e)
1
signs Method
signs(a::NumFieldElem, [embs::Vector{NumFieldEmb} = real_embeddings(K)])
-> Dict{NumFieldEmb, Int}
Return the signs of a
at the real embeddings in embs
as a dictionary, which are by default all real embeddings of the number field.
Examples
julia> K, a = quadratic_field(3);
julia> signs(a)
Dict{AbsSimpleNumFieldEmbedding, Int64} with 2 entries:
Complex embedding corresponding to -1.73 of real quadratic field define… => -1
Complex embedding corresponding to 1.73 of real quadratic field defined… => 1
is_positive Method
is_positive(a::NumFieldElem, e::NumFieldEmb) -> Bool
Given a number field element a
and a real embedding e
, return whether a
is positive at e
.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> is_positive(a, e)
true
is_positive Method
is_positive(a::NumFieldElem, embs::Vector{NumFieldEmb}) -> Bool
Return whether the element embs
. All embeddings in embs
must be real.
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> e(a)
[2.236067977 +/- 5.02e-10]
julia> is_positive(a, [e])
true
is_totally_positive Method
is_totally_positive(a::NumFieldElem) -> Bool
Return whether the element
is_negative Method
is_negative(a::NumFieldElem, e::NumFieldEmb) -> Bool
Given a number field element a
and a real embedding e
, return whether a
is positive at e
.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> is_negative(a, e)
false
is_negative Method
is_negative(a::NumFieldElem, embs::Vector{NumFieldEmb}) -> Bool
Return whether the element embs
. All embeddings in embs
must be real.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, -2.1);
julia> e(a)
[-2.236067977 +/- 5.02e-10]
julia> is_negative(a, [e])
true
Example
As mentioned, this functionality works for all types of number fields. Here is an example of an absolute non-simple number field.
julia> Qx, x = QQ["x"];
julia> K, a = number_field([x^2 + 1, x^3 + 2], "a");
julia> emb = complex_embeddings(K)
6-element Vector{AbsNonSimpleNumFieldEmbedding}:
Complex embedding corresponding to [1.00 * i, -1.26] of non-simple number field
Complex embedding corresponding to [1.00 * i, 0.63 + 1.09 * i] of non-simple number field
Complex embedding corresponding to [-1.00 * i, 0.63 + 1.09 * i] of non-simple number field
Complex embedding corresponding to [-1.00 * i, -1.26] of non-simple number field
Complex embedding corresponding to [-1.00 * i, 0.63 - 1.09 * i] of non-simple number field
Complex embedding corresponding to [1.00 * i, 0.63 - 1.09 * i] of non-simple number field
julia> k, b = quadratic_field(-1);
julia> i = hom(k, K, a[1]);
julia> restrict(emb[1], i)
Complex embedding corresponding to 1.00 * i
of imaginary quadratic field defined by x^2 + 1
julia> restrict(emb[3], i)
Complex embedding corresponding to -1.00 * i
of imaginary quadratic field defined by x^2 + 1