Winter term 24/25: Function fields (unisono)
Summer term 24: Seminear zu Algebra und Zahlentheorie (Quadratische Zahlkörper), Ankündigung: PDF (unisono, moodle)
Winter term 23/24: Praktikum Computeralgebra (unisono, moodle)
Summer term 23: Lineare Algebra II (moodle)
Winter term 22/23: Lineare Algebra I (moodle)
Winter term 22/23: Praktikum Computeralgebra (link)
Summer term 22: Algebraische Zahlentheorie (unisono)
Summer term 22: Praktikum Computeralgebra (link)
Winter term 21/22: Elemente der Algebra (moodle)
Summer term 18: Introduction to topology
Summer term 17: Quadratic number fields
Summer term 16: Quadratic number fields
2019, Marvin Schierholz, “Rational points on elliptic curves and norm relations”, master's thesis
2019, Johannes Schmitt, “On an effective version of Eichler's theorem”, master's thesis
2019, Malte Hopfer, “Imaginärquadratische Ordnung mit kleiner Klassenzahl” (imaginary quadratic orders with small class number), bachelor's thesis
2018, Christopher Cullmann, “Diskrete Logarithmen und Gaußsche ganze Zahlen” (discrete logarithms and Gaussian integers), bachelor's thesis
2017, Marvin Schierholz, “Rationale Punkte auf elliptischen Kurven” (rational points on elliptic curves), bachelor's thesis
2017, Johannes Schmitt, “Lineare Algebra über Polynomringen” (linear algebra over polynomial rings), bachelor's thesis
2016, Robin Ammon, “Quadratische Funktionenkörper” (quadratic function fields), bachelor's thesis
2018, Jannik Mähn, Fabian Mäurer & Erec Thorn, “Zur Berechnung von Teilkörpern in Zahlkörpern” (computing subfields of number fields). Implementation of basic functionality for subfields of number fields using julia and Hecke, including the algorithms of Hulpke, Klüners and van-Hoeij–Klüners.
2017, Malte Hopfer & Christopher Cullmann, “Diskrete Logarithmen in endlichen Gruppen” (discrete logarithms in finite groups). Implementation of basic algorithms for discrete logarithms including BSGS, Pohlig–Hellmann, Pollard's Rho algorithm and Index Calculus using julia and Nemo.
2017, Johannes Schmitt & Marvin Schierholz, “Algorithmen für elliptische Kurven über Zahlkörpern” (algorithms for elliptic curves over number fields). Implementation of basic algorithms for elliptic curves over number fields, including rank computation via 2-descent for rational curves, using julia and Nemo.
2016, Robin Ammon & Sofia Brenner, “Algorithmen für elliptische Kurven über \(\mathbf{Q}\)” (algorithms for elliptic curves over \(\mathbf{Q}\)). Implementation of basic algorithms for elliptic curves using julia and Nemo. Including algorithms for point counting over finite fields (BSGS, Schoof's algorithm), division polynomials, torsion points, minimal models over the rationals (Laska–Kraus–Connell), local arithmetic data (Tate's algorithm) and periods.
Summer term 19: Seminar Tate's thesis
Winter term 18/19: Algorithmic number theory
Summer term 18: Seminar modular forms
Winter term 17/18: Algorithmic number theory
Summer term 17: Einführung in das symbolische Rechnen
Winter term 16/17: Algorithmic number theory
Winter term 15/16: Introduction to complex analysis
Winter term 15/16: Algorithmic number theory
Winter term 15/16: Seminar elliptic curves and complex multiplication
Summer term 15: Elementary number theory
Summer term 15: Cryptography
Winter term 14/15: Algebraic structures
Winter term 14/15: Algorithmic number theory
Winter term 14/15: Seminar local class field theory
Summer term 14: Algebraic number theory
Summer term 14: Cryptography
Winter term 13/14: Algorithmic number theory
Winter term 13/14: Seminar coding theory
Winter term 13/14: Seminar cryptography
Summer term 13: Algebraic number theory
Summer term 13: Cryptography
Winter term 12/13: Algorithmic number theory
Winter term 12/13: Seminar global class field theory
Summer term 12: Elementary number theory
Summer term 12: Symbolic computations