Skip to content

Multi-sets and sub-set iterators

Multi-sets

Type and constructors

Objects of type MSet consists of a dictionary whose keys are the elements in the set, and the values are their respective multiplicity.

MSet Type
julia
MSet{T} <: AbstractSet{T}

Type for a multi-set, i.e. a set where elements are not unique, they (can) have a multiplicity. MSets can be created from any finite iterator.

Examples

julia
julia> MSet([1,1,2,3,4,4,5])
MSet{Int64} with 7 elements:
  5
  4 : 2
  2
  3
  1 : 2

4 : 2 means the element 4 has multiplicity 2, i.e. was included twice.

source

We can create multi-sets from any finite iterator, dictionary or pair of lists with the appropriate conditions.

multiset Function
julia
multiset(iter) -> MSet{eltype(iter)}
multiset(d::Dict{T, Int}) -> MSet{T}
multiset{l::Vector{T}, m::Vector{Int}} -> MSet{T}

Given either:

  • a finite iterator iter;

  • a dictionary d whose values are positive integers;

  • a list l and a list of positive integers m of same length as l;

return the asscciated multi-set M.

Examples

julia
julia> str = "A nice sentence"
"A nice sentence"

julia> multiset(str)
MSet{Char} with 15 elements:
  'n' : 3
  'A'
  'c' : 2
  'i'
  'e' : 4
  's'
  't'
  ' ' : 2

julia> multiset(Int[x^3%8 for x = 1:50])
MSet{Int64} with 50 elements:
  0 : 25
  5 : 6
  7 : 6
  3 : 6
  1 : 7

julia> d = Dict("a" => 4, "b" => 1, "c" =>9)
Dict{String, Int64} with 3 entries:
  "c" => 9
  "b" => 1
  "a" => 4

julia> multiset(d)
MSet{String} with 14 elements:
  "c" : 9
  "b"
  "a" : 4

julia> multiset(["a", "b", "c"], [4, 1, 9])
MSet{String} with 14 elements:
  "c" : 9
  "b"
  "a" : 4

source

julia
multiset(T::Type) -> MSet{T}

Create an empty multi-set M with elements of type T.

Examples

julia
julia> multiset(QQFieldElem)
MSet{QQFieldElem}()

julia> multiset()
MSet{Any}()

source

Functions

One can iterate over an MSet as on a regular Set. Here is moreover a list of functions defined for collections of objects which are currently available for MSet:

  • ==

  • all

  • any

  • copy

  • delete!

  • eltype

  • filter

  • filter!

  • in

  • intersect

  • intersect!

  • isempty

  • issubset

  • length

  • pop!

  • push!

  • setdiff

  • setdiff!

  • similar

  • unique

  • union

  • union!

  • ...

Note that pop! and delete! for MSet are available but have a different behaviour. For an element x in an multi-set M <: MSet, then pop!(M, x) will remove one instance of x in M - in particular multiplicity(M, x) will drop by 1. Much stronger, delete!(M, x) will remove all instances of x in M and so multiplicity(M, x) will be 0.

While unique will return the keys of the underlying dictionary, one can access the values (i.e. the multiplicities of the elements in the multi-set) via the following functions:

multiplicities Method
julia
multiplicities(s::MSet{T}) -> ValueIterator{Dict{T, Int}}

Return an iterator for the multiplicities of all the elements in s.

Examples

julia
julia> m = multiset([1,1,2,3,4,4,5])
MSet{Int64} with 7 elements:
  5
  4 : 2
  2
  3
  1 : 2

julia> mult_m = multiplicities(m)
ValueIterator for a Dict{Int64, Int64} with 5 entries. Values:
  1
  2
  1
  1
  2

julia> collect(mult_m)
5-element Vector{Int64}:
 1
 2
 1
 1
 2

source

multiplicity Method
julia
multiplicity(s::MSet{T}, x::T) -> Int

Return the multiplicity of the element x in the multi-set s. If x is not in s, return 0.

Examples

julia
julia> m = multiset([1,1,2,3,4,4,5])
MSet{Int64} with 7 elements:
  5
  4 : 2
  2
  3
  1 : 2

julia> multiplicity(m, 2)
1

julia> multiplicity(m, 6)
0

source

Finally, the sum and difference for MSet are also available. Difference is given by the complements of sets and the sum is given by disjoint union of sets.

+ Method
julia
(+)(s::MSet, itrs...) -> MSet

Return the multi-sets associated to the disjoint union of s and the collections of objects in itrs.

Examples

julia
julia> m = multiset("A nice sentence")
MSet{Char} with 15 elements:
  'n' : 3
  'A'
  'c' : 2
  'i'
  'e' : 4
  's'
  't'
  ' ' : 2

julia> n = multiset("A very nice sentence")
MSet{Char} with 20 elements:
  'n' : 3
  'e' : 5
  'A'
  'y'
  'i'
  'r'
  's'
  't'
  ' ' : 3
  'c' : 2
  'v'

julia> m + n
MSet{Char} with 35 elements:
  'n' : 6
  'e' : 9
  'A' : 2
  's' : 2
  'i' : 2
  't' : 2
  'y'
  'r'
  ' ' : 5
  'c' : 4
  'v'

source

- Method
julia
(-)(s::MSet, itrs...) -> MSet

Return the multi-set associated to the complement in s of the collections in itrs.

Alias for setdiff(s, itrs...).

Examples

julia
julia> m = multiset("A very nice sentence")
MSet{Char} with 20 elements:
  'n' : 3
  'e' : 5
  'A'
  'y'
  'i'
  'r'
  's'
  't'
  ' ' : 3
  'c' : 2
  'v'

julia> n = multiset("A nice sentence")
MSet{Char} with 15 elements:
  'n' : 3
  'A'
  'c' : 2
  'i'
  'e' : 4
  's'
  't'
  ' ' : 2

julia> n-m
MSet{Char}()

julia> m-n
MSet{Char} with 5 elements:
  'e'
  'y'
  'r'
  ' '
  'v'

source

Sub-set iterators

Sub-multi-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets of a given size

subsets Method
julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source